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THE LAMINAR BOUNDARY LAYER ON A ROTATING CYLINDER IN CROSSFLOW

Prepared by:

E. Krahn

ABSTRACT: A rotating cylinder in a stream produces a circulation
which is regarded as ‘the cause of the Magnus force., The problem is
to find the dependence of the circulation on the rotational speed of
the cylinder. This question is treated in the present report for a
stationary flow about a circular cylinder with the axis perpendicular
to the direction of the stream under the assumption that the flow in
the boundary layer is laminar., Two approximate methods are used for
the calculation of the boundary layer, One is due to Burgers and the
other is an adaptation of the Polhausen method., In the case of only
one stagnation line on the surface of the cylinder the boundary layer
is evaluated numerically, the profiles and the shearing stress computed.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, SILVER SFRING, MARYLAND
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This report contains information concerning the laminar boundary layer
on & rotating cylinder and the circulation in the potential flow around
the cylinder. It is a step in the calculation of the Magnus force.

This work has been carried out at the Naval Ordnance Laboratory under
Task NOL — A3d — 453 —~ 1 - 55,

The results are distributed to outside research agencies for information
and for use in the study of spinning bodies of revolution,

JOHN T. HAYWARD
Captain, USN
Commander

H. H. KURZWEG, Chief
Aeroballistic Research Department
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THE LAMINAR BOUNDARY LAYER ON A ROTATING CYLINDER IN CROSSFLOW

1. An infinite cylinder is rotating in a stream Perpendicular to
the axis and a stationary flow has developed., The fluid ig supposed
to be incompressible but viscous, ‘The Reynolds number ig assumed
small enough to ingure a laminar boundary layer. fThe question is,
how does the circulation in the surrounding flow depend on the speed
of the rotation? The answer will be sought by the calculation of the
boundary layer. This will be carried out by two different methods
1ndependently. First by an approximate method due to J. M. Burgers
and then by the solution of the momentum equation,

2. J. M. Burgers [1] calculated the flow around a non-rotating
Ccylinder by a method which has not been much used later, He got a
separation of the flow at an angle of 120° from the stagnation point,

& result which doeg not agree with the experiments nor with other
calculations, This is due to the fact that he toock the pressure
distribution of the surrounding potential flow as given in the casge

of & stream attached to the cylinder on the vhole surface. Hiemenz [2]
carried out the calculation of the same flow by a different method by
using a velocity distribution of the potential flow taken from experiments
and got a separation at 850. Applying the method of Blasius one gets
the same result, which coincides with the experimental data,

Recalculating Burgers' result with the pressure distribution used
by Hiemenz one gets the point of separation at 880, which does not differ
80 very much from the exact result, It is therefore of interest to
use this method in the calculation of the boundary layer on the rotating
cylinder, so much the more as it is easier to apply than other methods,

e Notations.

i X,y — Cartesian coordinates
_ | i T,¢ — polar coordinates
— radius of the cylinder
— length of the cylinder
— velocity of the surface of the cylinder

a
1
U
KJ' . y Uso — velocity of the potential flow
at infinity
Uu - velocity of the potential flow near the
surface of the cylinder

u — velocity component of the flow in the boundary layer in the direction
parallel to the surface of the cylinder.

V — velocity component of the flow in the boundary layer in the r~direction

w — vorticity




Q,v — potential and stream function of the potential flow

v_,v_— velocity components in the boundary layer parallel to the
x V-

T

\4

— angle between the radius to the stagnation point and the negative
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X— and the y-axis,

X — axis
density
viscosity
shearing stress

kinematic viscosity

Re — Reynolds' number

f“ — circulation

5 — thickness of the boundary layer

n — distance from the cylinder in radial direction

K — form parameter

s
- b
P — power
4,

The stationary potential flow around the cylinder is given by

7 N um(‘(,-i- %-l)cox' + o

["l
4T

ml

e N b

f

S

e~

ele
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If the circulation F does not exceed 4xU. a then there are

one or two stagnation points on the circle (stagnation lines on the
cylinder) and [ cen be written as

[ =%4xl.a Mm()r

From now on, this expression for F (which is a restriction on the
amount of circulation) will be used,

For the flow near the surface of the cylinder one can take r: a
and has then

U -.,ZM,O(’MT+WJ’)
b = 2 lwa(formy - eonf).
These expressions will be further used for U and ¢.

Se Burgers' method consists in starting from the equation of the
vorticity in a stationary flow

1 dw oy dw Ve Yw)
i X T 333‘”(3x1+331/

and substituting for the velocity components in the boundary layer
those of the potential flow outside the boundary layer, i.e,
_ Y __ Y

— —

W= =T Uy = X )
vy 2

where ¥ is the stream function of the potential flow., Transforming (1)
from the variables X,y to the variables (,¥ he gets

)l % \
ééi' = V('Lii + %“3{/'
)P e R d
2
In conformity with usual boundary layer simplifications %—i—i is dropped
2
as small compared with W gng
)
J 3% 0w
(2) I = y 2
0P oY
results, A solution of (2) is u{jz
| o yie-t)
W o= —oem e o ,
V-t

where £ is an arbitrary parameter,
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As (2) is a linear equation, then with an arbitrary function A(t)

b ‘ N
“’=‘§Jf Jfﬁii—uz APl 1
5 .TC'V(¢>"§')

is also a solution, ¢1 is the value of ¢ at the forward stagnation
point,

To get the velocity component u in the boundary layer in_the
direction tangential to the circle (surface of the cylinder) 2% is
neglected compared with % in o

LA 3 3
w=3(35 3%

as v, the velocity component in the radial direction, is zerc at the
surface and small inside the boundary layer. Then

N PRy 1'%
W=-3 3557 2 oY u.

The application of this method to the problem at hand requires now the
determination of the constants and the function A(t).

For ¥ =0 there must be u =~ Uo and for sufficiently large ¥ there
mst be uzU,
Writing

,*,2,
P Y T WY .
; L ) e A YL
w= Uy Wf A [ e A1

and taking into account y2
)

~ 2 Y -
‘Z Vry(o-§) | g

the condition for A(t) becomes

U =W+ [TAB)E

Thus I
Rl
Ad) = (2U-U)rF

and Y

t

® S Hv(e-x)
' ! 92U~ _l_y_i 3 - AY A%
) w-ll, *TI’L“‘“ w)5el] e R3S
L
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Here q 8 1 ¥ of the potential flow are regarded as coordinates in the
boundar) ayer, where ¥ is not the stream function of the viscous flow,

U is regarded as a function of ¢ only. This corresponds to the
assumption of a pressure in the boundary layer, which depends on.f only
and not on r,

Velocity profiles can be easily computed by (3), but one should
remember that (3) is an approximate expression only, representing u
correctly at the surface of the cylinder and at the outer limit of the
boundary layer,

6. To determine the circulation about the cylinder from (3) small
values of ¥ will be considered and higher than first order terms in ¥
will be neglected. Thgg

¥

[Ty Y
o 11rvi¢-§) {xv(®-%)

Making the substitution

r-a+myn

. and retaining linear terms only in ¢

Y:zqu(wf +m1} = M}Z .
(3) becomes thus

° dl U |
u':u°+ %L(ZN*UO) ‘TE- J;y('é‘f) c g ‘

The integral must be equal to zero for U= 0 to give a finite value to u,
That is the case at the forward stagnation point where ¢=
At the rear atagnation point it gives a condition for U
values of U and ¢

9,.
inserting the

o.

yr*a’_(f,;nlf+-%[-,‘,zt:7§“)m:( (vaf*’ ng ) dtf .0
o V(:n()m‘mg = cor(Tes) -y u‘{;} e 'f—_

or

Tt . . T+ . .
)y U _ {(m:fuw- {[)”cou{ . dy :j { _"f;i‘i"i'lv,X__) el d dg .
4Uw -1 V“bf+ww+““1-f“”X —r ﬁ%f’+wﬁ+(nq%fhml
Tre denominator of each integral 1s zero at Y- n+7, nevertheless the
integrals converge. This can be seen if ¢ is introduced by the substitution

\f:‘— N+ Yy — €
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and the integrals calculated from X+y — € to x+ y. They become then

2 z
L& - 2 N
—Cﬁﬁ'V6§% . and o’y [y ¢
respectively, This proves the statement,
The integrals in (4) were evaluated numerically, except in the

case y = 0 where an exact integration is possible, and the following
values were found

l 0 T | F | F
U, - :
T [.6 2.5 3.2 3.6

These results nced some explanation,

If the cylinder does not rotate then the separation occurs on both

s8ides, let us call them the upper and the lower sides, symmetrically,

If the cylinder rotates in such a way that on the upper side the rotation
is in the direction of the flow, then on this side the point of
separation will be farther from the forward stagnation point than in

the case of the non-rotating cylinder, and on the lower side it will be

nearer,

The result for y= O means that in case of a speed ratio 1.6 the
flow will be attached to the cylinder on the upper half, whereas on
the lower side it 8eparates and therefore the velocity distribution

assumed for U does not apply here,

Similarly in case of Y= g and 7= %, vwhere the calculation is valid
on the upper part from stagnation point to stagnation point.

One cannot expect from these results that they are precise, because
in deriving (4) too many terms were neglected, One should not be
surprised if the figures are erroneous by 10 or 20 per cent, Nevertheless
*Ley are of the same or%er as the experimental results and show that
€.g. in the case of y- 5 the circulation in the boundary layer decreasges
from its value at the surface of the cylinder to about half its amount
in the potential flow, for at the surface

M z8rall, =720 Ueo
whereas in the potential flow
/"' = 11",71“0 Z/N .
Te To get more reliable results a different method will be applied.
The boundary layer equation shall be taken in the form

tw dw = U AU ot

=+ Vo= s

(5) Canf TV ady *V 5
6
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Here the centrifugal term is omitted., This is Justifiable as
long as the thickness of the boundary layer is small compared with
the radius of the cylinder,

The other equation is the continuity equation

(6) -0
The boundary conditions are
/oz r=q ¢ =1, v=0
(7) {41. r=a+d: wuzU g—f—::o -%%‘_;:0)

where § is the boundary layer thickness.

Further the variable
=T -8
will be used,

Eliminating v from (5) and (6) and integrating over the thickness of the
boundary layer the momentum equation results

g )
du du il_‘: - "_>_°_"
(8) Z-o/u.yfdil—-?/{lffd;zzud‘f J avg'z veo

8. The solution will be sought in the form

K
u‘ :LO Q-Kt >
K=
where the ak are functions ofy and t:g .

By the 5 boundary conditions (7) the 5 functions ak are determined and
the solution is

(9)  w=UgrRE-26248)U-U,) + L (¢ -36243t3-t4)KU |

where

&t du
(10) K=ao Ty

Only the boundary layer thickness 5 will be used, as the displacement

thickness g
L= 5)dy

does not seem reasonable in the present case, It could be replaced perhaps
by

) )
e e Lty
7
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g. J'ufaé;fuhn7 (9) o= (8) ome 346 the /a(l«w(us czmxf[oﬁ

° dy 30 15120

L 2L gy d” _f__KuM}+

28 {3, S ol AL ) 2+ T (- L)
t.{

1s120 d\f * 3072 J\f
2 7 _
M) +2 f—%{-{;u,(u—ua)+'_;—o UK = L () 2 (U=U ) K U +
! 2 _
ey \ KU }

Furthen the fo(’fowgmj netatioms  widf be wred

U KU
f . Ku .
(11a) T S
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Alten division 43 SU,% the equation (I1] ecomes

LT v &+ S (K1) (X- N s Y+ o VA T+
PP ey - U L)Y - 2y ) -
) X{ W(X")+'zy_ 12,60 1572 [ 8144
d
R S A I UEEETSA T
_ » X (X=1)
=X-F v = X
No” ?"\,‘ﬁ }\a/z 5 le M(&'U))EO‘ 49 X yczmo( khown {unc'fcn>
Ag
y. 4 U U
10av U, tf
then

K foav 4% U, tf /Oavll,

Uodp
“nd ‘U
dy 2 48 o, Mo ToE
Y dX 4§  dX X (gl_ll)’-
i
U);’”j U U (M:n'f‘f&m[)
ond %eh JZZI

u. Z;’T" - uo , 4“\?
(d_l_{)z T2 U - sinty ’
f

9
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jnhadua('n? a consfant o i}:}

4 U =

and euoun(ng u'.n)p 4w

/S s Mo X o Ly
/m\o-zum 4m¥—2 “)( wn y ?X M)/
nere

,_L_d-#__ Z{X—Zcmlny

248 1 dY ! YX —2e un
& dx Y dX X 4X2~4ch(_clw2*

_,__1___-(-,_(__1‘_ ?)(?—/SXcm,y ozscmL_
VAR T (i Kesing - 0.25¢% en’y )

s
ot Y
/

¢y Wl ten fﬁ Zdl (Lﬂd

Ll/"*-'n_t,’) C(,;IL'I. MLL["f Iz ¢, (‘Q+ PN ".‘4 %
! ! ;

L he m o mant L .Qauﬂf"on

2
y'{qloo?oz 2 +/—gz[)\”f)\/ + LY "2736()(-|) +”"r\/ ___i_ff'zo( 30240(_ }y

190 2 ! 2 vy L
4'*3,;,255)/ ”ET,XY"'%.\..X i ‘foy.}+

. v ! 7 ’ = .
. f Y ?’3 .,_—r,Y +/s//zy - 7 XY - :‘:ﬁ XY + ',la)'((f\‘/)-

_ y!(ﬁ ;‘" /-5 I: '.lnj' - 0.2 {cﬁ-,{"}"

o / 27 ,
P Lo eant, ‘./':.-{“’?\X’,)*’L"yglzw (1) mlz /)yﬂ;f:‘/ z%X(X‘f)*:,'wXY}w

i

10
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Thie equation is now multiplied by 72.576 and solved with respect to Y'

/
b= { Y(24*15 Xcu‘»dr - o.zs'c%m”l N0.2Y%+0.092X Y +1.32Y =2.1312.X %= 11 808X +3.312)+

(19)  +K(K*Kewmy -0.25¢ 0ty )(-3.408Y2413.30 31X Y- 8.5248 Y472 51X -79576X%)} -

' {)((X-O.b'cmp 0.5 )(X-0-5e wny -05)( Y~ 12X Y 176X+ 2,76 )}

10, X varies on the upper side of the c%linder from zero at the

stagnation point to 0.,5c(1l+ sin y) at and decreases then tu zero

at the rear stagnation point. On the lower side X decreases from zero

at the forward staznation point to O.5c(— 1+sin 7) at f——% and increases

again to zero at the rear stagnation point,

As Y is the product of a positive quantity with Ugu- then it is zero

at the forward stagnation point 2 essumes positive ¥alues for increasing

f and decreases to zero at Y= %, »then it is negative for larger values
and becomes zero again at the rear stagnation point., On the lower

side of the cylinder Y is zero at the forward stagnation point, assumes

further negative values until 4 =—~—‘2:- swhere it is zero again, then becomes

positive and decreases to zero at the rear stagnation point,

Y Thus the solution (Fig.2)
of the differential equation
mst start from (0,0),
x proceed through positive
values of X and Y to
' (0.5¢(1+8in 7),0) and return
v 1 through negative values of Y
O'fc(‘/*“‘*ﬂ 0.43(+44ny) to (0,0). The solution for
¢ the lower part of the
cylinder starts from (0,0),
Fig.2 proceeds through negative
values of X and Y to (0.5c(sin y — 1),0) and returns through positive
values of ¥ to (0,0).

The question is whether for a given y there is a solution satisfying
these conditions for every given value of ¢ or only for certain values
of ¢ or for none,

One should expect a solution for only one value of c because a
circulation in the flow should be produced uniguely by a certain spin of
the cylinder.,

To find an answer to the question the singularities of the differentiasl
equation have to be investigated.

11
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Y' becomes infinite on five straight lines given by the factors
in the denominator of (12), (Fig.3.)

| Y P

o 4T ‘rSuppose 0.5c(1+ sin ¥)> 1., The
0-5('_(%3 1) / solution starting from (0,0) has
a_r;(u-.....Jp to cross the line Y= l.2(x - 1)

/ between X =1 and X= 0,5c(1+sin 7)
A | and proceed then to (0.5¢c(1+ sin 7),0).

Fig.>

On the line Y=1,2(X — 1) there is a singular point between 1 and
0.5c(1+ sin y) where the numerator in (12) is zero. This can be shown
by substituting in the numerator Y= 1.2(X - 1). Tt then becomes
(X~ [ - 1.93536x® = 0.48584x+ 2.4192) (242 — 1.5%c sin 7 — 0.25¢2cos%y) +

2
+X(3.87072X — 5.32224)(x% - X ¢ sin y — 0.25c%c0s%y)].

The expression in the square brackets is equal to

= 1.45152(1 -~ ¢ sin y - 0.25 cacosay)
for X=1, The expression is positive, as according to the assumption

1l - 0.5¢c 8in ¥ < 0,5¢

t.a.nd. the expression in question can be written

- 1.45152[(1 - 0.5¢ sin 7)2 - (o.5c)2].
For X= 0,5¢(1+ sin ¥) the expression becomes

0.2502(1+31n 7)(2.4192 — 0.48384x — 1.93536X2)
and this is negative for X> 1,

Thus the numerator in (12) is zero somevwhere between X=1 and
X=0.5c(1+ 8in y), The point, let us call it P, on the line Y= 1.2(X - 1)
where the numerator is zero is a saddle point (Fig.h.) The derivative
Y' is positive to the right of P above the line and to the left below
the line, it is negative to the left of P above the line and to the right
below the line, There are two integral curves which pass through the point

P. Only one of them can possibly be the solution of the Problem, that which
passes through the point P from the left above the line to the right below

the line, This curve has to pass through (0,0) to be a solution. This ig

12
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generally not the case., For y- x.2
the computation showed that it did not

P g pass through (0,0) for values of c

i slightly exceeding one (1.05 and 1.l),

That suggests that there is no solution

e for y= n”/2 and ¢ different from one. Tt
il X has not yet been investigated whether
there exist values of y and ¢ with
0.5c(1+sin y)#£1 for which an integral
Fig.h curve through the singular point P reaches
the origin., If such values do not exist then the conclusion is that

2
C=TTsmy

It may be mentioned that in the case 0.5¢(1+ 8in y) > 1 there are two more
singular points on the line Y= 1,2(X — 1), One is a spiral point at X= 1
and the other a saddle point between X= Q0 and X =1,

0.5‘c:(l+ st)

For y= x/ 2, ¢ =1 an integral curve was compted numerically, A
saddle point is in this case at (0.5, — 0.6) and the curve passing through
this point passed through (0,0) and (1,0). The solution is shown in Fig.5.

From the found solution the boundary layer profiles were computed and
are shown in Fig, 6,

In Fig. 7 the values of the form parameter K are Plotted against the
angle f and in Fig. 8 the shearing stress t times VR against ;.
J

Sﬁgllfg
As ~ Y
T :/l/. 37 ‘7:0

U. 2a

= follows

then from (9),(10) and (11a) with Re-

= {

:C_:_V:&___ 9N =]] 4 . L /-‘i-)-(— /%
0 (e K

This is & dimensionless quantity.

Numerical integration gives
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and thus the shearing stress on the surface of the cylinder is
A 2 - ¢
‘/Z'Qdy:——‘agxll-gyyoo% v
(=]
and the power P necessary to rotate the cylinder so that Uoz hUw is

P=4#5.3 Qf? Ui "f&'i.

11, The computation sugrests that there exist integral curves for
0.5¢(1 +sin 7)=1 only. This equation gives the connection between
the spin of the cylinder and the circulation, but it will be valid for
the upper side of the cylinder only giving the atagnation points and
therewith the region of attached flow on the upper side of the cylinder
in dependence on the velocity of rotation of the cylinder,

What happens on the lower side of the cylinder?

If U°= O then there is separatign on the upper as well as on the lower

side of the cylinder between 80° angd 90" from the stagnation point,

If Uo has a positive value the point of separation on the upper side will

be moOved farther from the forward stagnation Point and the separation

point on the lower side will be nearer to the forward stagnation point

than in the case U = O, because on the lower side the wall is moving in

& direction opposi%e to the flow, ’

Thus there will be a wake on the lower side, the limits of which
are a point between f=-fand «f—_—’{ and the rear stagnation pointf:ﬁ'-f{.

This has to be taken into account in solving (12) for negative
values of X. The solution is limited by the line Y s 1.2(X - 1), As
long as |Y|<1.2|X - 1| & family of integral
curves exist which pass through (0,0) and
0.5c(sin y ~ 1), But for larger values of
[Y| there are curves starting from (0,0)
which cross the line Y= 1.2(X — 1) and remain
on the lower side of it §F13.9). These do
not reach the point 0.5c(sin y — 1) and
correspond to a separated flow, To calculate
such a flow the pressure distribution from
the forward stagnation point to the point of
separation must be known. Of course one can
get an approximate solution taking on the
lower gide of the cylinder as well u=2uo(mffm!j

= =
O-SQ{'Ai'nn', -1 )

y
Fig, 9 as if the flow was attached.

For the calculation of the Magnus force the pressure in the wake
mist be known,

14
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